Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Redox Biol ; 71: 103107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479224

RESUMO

Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.


Assuntos
Citocromo P-450 CYP2E1 , Hepatopatias Alcoólicas , Animais , Humanos , Camundongos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Agonismo Inverso de Drogas , Etanol/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo
2.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436764

RESUMO

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Assuntos
Comunicação Celular , Fígado , Proteínas de Sinalização YAP , Animais , Camundongos , Comunicação Celular/genética , Células Endoteliais , Hepatócitos , Ligantes , Fígado/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
3.
Int J Exp Pathol ; 105(2): 64-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328944

RESUMO

Transforming growth factor (TGF)-ß and toll-like receptors (TLRs) have been shown to independently modulate the proliferation of hepatocellular carcinoma (HCC). Since a direct cross-talk between these two signalling pathways in HCC has not been clearly described before, we aimed here to explore the possibility of such interaction. A human HCC tissue array (n = 20 vs. four control samples), human HCC samples (n = 10) and steatohepatitis-driven murine HCC samples (control, NASH and HCC; n = 6/group) were immunostained for TGFßR1, pSMAD2, TRAF6, IRAK1 and PCNA. The results were confirmed by immunoblotting. Effects of constant activation of the SMAD pathway by constitutive expression of ALK5 or knockdown of mediators of TLR signalling, IRAK1 and MyD88, on HCC proliferation, were investigated in the HCC cell line (HUH-7) after treatment with TGFß1 cytokine or TGFßR1 kinase inhibitor (LY2157299) using PCNA and MTS assay. TGFßR1 expression is decreased in human and murine HCC and associated with downregulated pSMAD2, but increased IRAK1, TRAF6 and PCNA staining. TGFßR1 kinase inhibition abolished the cytostatic effects of TGFß1 and led to the induction of IRAK1, pIRAK1 and elevated mRNA levels of TLR-9. Overexpression of ALK5 and knockdown of MyD88 or IRAK1 augmented the cytostatic effects of TGFß1 on HUH-7. In another epithelial HCC cell line, that is, HepG2, TGFßR1 kinase inhibitor similarly elevated cellular proliferation. There is a balance between the canonical SMAD-driven tumour-suppressing arm and the non-canonical tumour-promoting arm of TGFß signalling. Disruption of this balance, by inhibition of the canonical pathway, induces HCC proliferation through TLR signalling.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Citostáticos , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Proliferação de Células , Neoplasias Hepáticas/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
iScience ; 27(2): 108077, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38371522

RESUMO

This communication presents a mathematical mechanism-based model of the regenerating liver after drug-induced pericentral lobule damage resolving tissue microarchitecture. The consequence of alternative hypotheses about the interplay of different cell types on regeneration was simulated. Regeneration dynamics has been quantified by the size of the damage-induced dead cell area, the hepatocyte density and the spatial-temporal profile of the different cell types. We use deviations of observed trajectories from the simulated system to identify branching points, at which the systems behavior cannot be explained by the underlying set of hypotheses anymore. Our procedure reflects a successful strategy for generating a fully digital liver twin that, among others, permits to test perturbations from the molecular up to the tissue scale. The model simulations are complementing current knowledge on liver regeneration by identifying gaps in mechanistic relationships and guiding the system toward the most informative (lacking) parameters that can be experimentally addressed.

5.
Commun Biol ; 7(1): 8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168942

RESUMO

Cholesterol mediates membrane compartmentalization, affecting signaling via differential distribution of receptors and signaling mediators. While excessive cholesterol and aberrant transforming growth factor-ß (TGF-ß) signaling characterize multiple liver diseases, their linkage to canonical vs. non-canonical TGF-ß signaling remained unclear. Here, we subjected murine hepatocytes to cholesterol depletion (CD) or enrichment (CE), followed by biophysical studies on TGF-ß receptor heterocomplex formation, and output to Smad2/3 vs. Akt pathways. Prior to ligand addition, raft-dependent preformed heteromeric receptor complexes were observed. Smad2/3 phosphorylation persisted following CD or CE. CD enhanced phospho-Akt (pAkt) formation by TGF-ß or epidermal growth factor (EGF) at 5 min, while reducing it at later time points. Conversely, pAkt formation by TGF-ß or EGF was inhibited by CE, suggesting a direct effect on the Akt pathway. The modulation of the balance between TGF-ß signaling to Smad2/3 vs. pAkt (by TGF-ß or EGF) has potential implications for hepatic diseases and malignancies.


Assuntos
Hepatopatias , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Epidérmico , Hepatócitos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Hepatopatias/metabolismo , Colesterol/metabolismo
6.
Am J Pathol ; 194(1): 52-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820926

RESUMO

Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasing mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-ß. However, details of how HNF4α is suppressed are largely unknown to date. Herein, TGF-ß did not directly inhibit HNF4α but contributed to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α expressed both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lacked either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibited C/EBPα transcription. Long-term TGF-ß incubation resulted in C/EBPα depletion, which abrogated HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter was abolished by insulin. Two-thirds of patients without C/EBPα lacked membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, these data indicate that hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.


Assuntos
Proteína de Ligação a CREB , Insulina , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína de Ligação a CREB/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo
7.
Cell Mol Gastroenterol Hepatol ; 17(4): 567-587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38154598

RESUMO

BACKGROUND & AIMS: Transforming growth factor-ß1 (TGF-ß1) plays important roles in chronic liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD involves various biological processes including dysfunctional cholesterol metabolism and contributes to progression to metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma. However, the reciprocal regulation of TGF-ß1 signaling and cholesterol metabolism in MASLD is yet unknown. METHODS: Changes in transcription of genes associated with cholesterol metabolism were assessed by RNA sequencing of murine hepatocyte cell line (alpha mouse liver 12/AML12) and mouse primary hepatocytes treated with TGF-ß1. Functional assays were performed on AML12 cells (untreated, TGF-ß1 treated, or subjected to cholesterol enrichment [CE] or cholesterol depletion [CD]), and on mice injected with adenovirus-associated virus 8-control/TGF-ß1. RESULTS: TGF-ß1 inhibited messenger RNA expression of several cholesterol metabolism regulatory genes, including rate-limiting enzymes of cholesterol biosynthesis in AML12 cells, mouse primary hepatocytes, and adenovirus-associated virus-TGF-ß1-treated mice. Total cholesterol levels and lipid droplet accumulation in AML12 cells and liver tissue also were reduced upon TGF-ß1 treatment. Smad2/3 phosphorylation after 2 hours of TGF-ß1 treatment persisted after CE or CD and was mildly increased after CD, whereas TGF-ß1-mediated AKT phosphorylation (30 min) was inhibited by CE. Furthermore, CE protected AML12 cells from several effects mediated by 72 hours of incubation with TGF-ß1, including epithelial-mesenchymal transition, actin polymerization, and apoptosis. CD mimicked the outcome of long-term TGF-ß1 administration, an effect that was blocked by an inhibitor of the type I TGF-ß receptor. In addition, the supernatant of CE- or CD-treated AML12 cells inhibited or promoted, respectively, the activation of LX-2 hepatic stellate cells. CONCLUSIONS: TGF-ß1 inhibits cholesterol metabolism whereas cholesterol attenuates TGF-ß1 downstream effects in hepatocytes.


Assuntos
Fígado Gorduroso , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Hepatócitos/metabolismo , Células Estreladas do Fígado/patologia , Linhagem Celular , Fígado Gorduroso/metabolismo
9.
Cell Death Dis ; 14(7): 414, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438332

RESUMO

The human liver has a remarkable capacity to regenerate and thus compensate over decades for fibrosis caused by toxic chemicals, drugs, alcohol, or malnutrition. To date, no protective mechanisms have been identified that help the liver tolerate these repeated injuries. In this study, we revealed dysregulation of lipid metabolism and mild inflammation as protective mechanisms by studying longitudinal multi-omic measurements of liver fibrosis induced by repeated CCl4 injections in mice (n = 45). Based on comprehensive proteomics, transcriptomics, blood- and tissue-level profiling, we uncovered three phases of early disease development-initiation, progression, and tolerance. Using novel multi-omic network analysis, we identified multi-level mechanisms that are significantly dysregulated in the injury-tolerant response. Public data analysis shows that these profiles are altered in human liver diseases, including fibrosis and early cirrhosis stages. Our findings mark the beginning of the tolerance phase as the critical switching point in liver response to repetitive toxic doses. After fostering extracellular matrix accumulation as an acute response, we observe a deposition of tiny lipid droplets in hepatocytes only in the Tolerant phase. Our comprehensive study shows that lipid metabolism and mild inflammation may serve as biomarkers and are putative functional requirements to resist further disease progression.


Assuntos
Fígado Gorduroso , Relesões , Humanos , Animais , Camundongos , Inflamação , Cirrose Hepática/induzido quimicamente
10.
Hepatol Commun ; 7(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486964

RESUMO

BACKGROUND: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same. METHODS: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy. RESULTS: We show that F4/80+/CD11bhi/CD14hi macrophages of the liver are recruited in a C-C motif chemokine receptor (CCR2)-dependent manner and exhibit an activation state that differs substantially from that of the other liver macrophage populations, which can be distinguished on the basis of CD11b and CD14 expressions. Thereby, primary hepatocytes are capable of creating an environment in vitro that elicits the same specific activation state in bone marrow-derived macrophages as observed in F4/80+/CD11bhi/CD14hi liver macrophages in vivo. Subsequent analyses, including studies in mice with a myeloid cell-specific deletion of the TGF-ß type II receptor, suggest that the availability of activated TGF-ß and its downregulation by a hepatocyte-conditioned milieu are critical. Reduction of TGF-ßRII-mediated signal transduction in myeloid cells leads to upregulation of IL-6, IL-10, and SIGLEC1 expression, a hallmark of the activation state of F4/80+/CD11bhi/CD14hi macrophages, and enhances liver regeneration. CONCLUSIONS: The availability of activated TGF-ß determines the activation state of specific macrophage populations in the liver, and the observed rapid transient activation of TGF-ß may represent an important regulatory mechanism in the early phase of liver regeneration in this context.


Assuntos
Regeneração Hepática , Fator de Crescimento Transformador beta , Animais , Camundongos , Expressão Gênica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
J Hepatol ; 78(4): 805-819, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669703

RESUMO

BACKGROUND & AIMS: Capsaicin receptor, also known as transient receptor potential vanilloid 1 (TRPV1), is involved in pain physiology and neurogenic inflammation. Herein, we discovered the presence of TRPV1 in hepatic stellate cells (HSCs) and aimed to delineate its function in this cell type and liver fibrosis. METHODS: TRPV1 expression was examined in liver biopsies from patients with liver fibrosis using quantitative real-time PCR and immunostaining. Its contribution to liver fibrosis was examined in Trpv1-/- mice, upon lentiviral delivery of the TRPV1 gene, and in human and mouse primary HSCs, using patch clamp, intracellular Ca2+ mobilization determination, FACS analyses and gain/loss of function experiments. Binding of sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) to TRPV1 was determined using mass spectrometry, co-immunoprecipitation, surface plasmon resonance, bioluminescence resonance energy transfer, and NanoBiT. RESULTS: TRPV1 mRNA levels are significantly downregulated in patients with liver fibrosis and mouse models, showing a negative correlation with F stage and α-smooth muscle actin expression, a marker of HSC activation. TRPV1 expression and function decrease during HSC activation in fibrotic livers in vivo or during culture. Genetic and pharmacological inhibition of TRPV1 in quiescent HSCs leads to NF-κB activation and pro-inflammatory cytokine production. TRPV1 requires binding of its N-terminal ankyrin repeat domain to the TIR-His583 (Toll/interleukin-1 receptor) domain of SARM1 to prevent HSCs from pro-inflammatory activation. Trpv1-/- mice display increased HSC activation and more severe liver fibrosis, whereas TRPV1 overexpression is antifibrotic in various disease models. CONCLUSION: The antifibrotic properties of TRPV1 are attributed to the prevention of HSC activation via the recruitment of SARM1, which could be an attractive therapeutic strategy against liver fibrosis. IMPACT AND IMPLICATIONS: We identified the neuronal channel protein TRPV1 as a gatekeeper of quiescence in hepatic stellate cells, a key driver of liver fibrogenesis and chronic liver disease. Physiologically expressed in healthy liver and consistently downregulated during liver fibrosis development, its therapeutic re-expression is expected to have few side effects, making it an attractive target diagnostic tool and drug candidate for industry and clinicians.


Assuntos
Células Estreladas do Fígado , Canais de Cátion TRPV , Humanos , Camundongos , Animais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Regulação da Expressão Gênica , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/farmacologia , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
12.
Gut ; 72(3): 549-559, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35444014

RESUMO

OBJECTIVE: Multidrug resistance protein 2 (MRP2) is a bottleneck in bilirubin excretion. Its loss is sufficient to induce hyperbilirubinaemia, a prevailing characteristic of acute liver failure (ALF) that is closely associated with clinical outcome. This study scrutinises the transcriptional regulation of MRP2 under different pathophysiological conditions. DESIGN: Hepatic MRP2, farnesoid X receptor (FXR) and Forkhead box A2 (FOXA2) expression and clinicopathologic associations were examined by immunohistochemistry in 14 patients with cirrhosis and 22 patients with ALF. MRP2 regulatory mechanisms were investigated in primary hepatocytes, Fxr -/- mice and lipopolysaccharide (LPS)-treated mice. RESULTS: Physiologically, homeostatic MRP2 transcription is mediated by the nuclear receptor FXR/retinoid X receptor complex. Fxr-/- mice lack apical MRP2 expression and rapidly progress into hyperbilirubinaemia. In patients with ALF, hepatic FXR expression is undetectable, however, patients without infection maintain apical MRP2 expression and do not suffer from hyperbilirubinaemia. These patients express FOXA2 in hepatocytes. FOXA2 upregulates MRP2 transcription through binding to its promoter. Physiologically, nuclear FOXA2 translocation is inhibited by insulin. In ALF, high levels of glucagon and tumour necrosis factor α induce FOXA2 expression and nuclear translocation in hepatocytes. Impressively, ALF patients with sepsis express low levels of FOXA2, lose MRP2 expression and develop severe hyperbilirubinaemia. In this case, LPS inhibits FXR expression, induces FOXA2 nuclear exclusion and thus abrogates the compensatory MRP2 upregulation. In both Fxr -/- and LPS-treated mice, ectopic FOXA2 expression restored apical MRP2 expression and normalised serum bilirubin levels. CONCLUSION: FOXA2 replaces FXR to maintain MRP2 expression in ALF without sepsis. Ectopic FOXA2 expression to maintain MRP2 represents a potential strategy to prevent hyperbilirubinaemia in septic ALF.


Assuntos
Fator 3-beta Nuclear de Hepatócito , Falência Hepática Aguda , Proteína 2 Associada à Farmacorresistência Múltipla , Animais , Camundongos , Bilirrubina , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Hiperbilirrubinemia/metabolismo , Hiperbilirrubinemia/patologia , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Falência Hepática Aguda/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo
13.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776660

RESUMO

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Assuntos
Telangiectasia Hemorrágica Hereditária , Camundongos , Feminino , Animais , Telangiectasia Hemorrágica Hereditária/genética , Células Endoteliais/metabolismo , Fator de Crescimento Placentário/metabolismo , Fígado/patologia , Transdução de Sinais , Fator 2 de Diferenciação de Crescimento/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo
14.
Prog Mol Biol Transl Sci ; 190(1): 219-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008000

RESUMO

Medical abzymology has made a great contribution to the development of general autoimmunity theory: it has put the autoantibodies (Ab) as the key brick of the theory to the level of physiological functionality by providing such Ab with the ability to catalyze and mediate direct and independent cytotoxic effect on cellular and molecular targets. Natural catalytic autoantibodies (abzymes) while being a pool of canonical Abs and possessing catalytic activity belong to the new group of physiologically active substances whose features and properties are evolutionary consolidated in one functionally active biomolecule. Therefore, further studies on Ab-mediated autoAg degradation and other targeted Ab-mediated proteolysis may provide biomarkers of newer generations and thus a supplementary tool for assessing the disease progression and predicting disability of the patients and persons at risks. This chapter is a summary of current knowledge and prognostic perspectives toward catalytic Abs in autoimmunity and thus some autoimmune clinical cases, their role in pathogenesis, and the exploitation of both whole molecules and their constituent parts in developing highly effective targeted drugs of the future to come, and thus the therapeutic protocols being individualized.


Assuntos
Anticorpos Catalíticos , Autoimunidade , Anticorpos Catalíticos/metabolismo , Autoanticorpos/metabolismo , Biomarcadores , Progressão da Doença , Humanos
15.
Can J Gastroenterol Hepatol ; 2022: 1048104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855954

RESUMO

Objectives: We assessed the potential of glial cell line-derived neurotrophic factor (GDNF) as a useful biomarker to predict cirrhosis in chronic hepatitis B (CHB) patients. Methods: A total of 735 patients from two medical centers (385 CHB patients and 350 healthy controls) were included to determine the association of serum and tissue GDNF levels with biopsy-proven cirrhosis. The diagnostic accuracy of serum GDNF (sGDNF) was estimated and compared with other indices of cirrhosis. Results: We showed significantly higher levels of sGDNF in CHB patients with fibrosis (28.4 pg/ml vs. 11.6 pg/ml in patients without) and patients with cirrhosis (33.8 pg/ml vs. 23.5 pg/ml in patients without). The areas under receiver operating curve (AUROCs) of sGDNF were 0.83 (95% confidence interval (CI): 0.80-0.87) for predicting liver fibrosis and 0.84 (95% CI: 0.79-0.89) for cirrhosis. Findings from the serum protein level and hepatic mRNA expression were consistent. Using the best cutoff to predict cirrhosis, we categorized the patients into sGDNF-high and sGDNF-low groups. The sGDNF-high group had significantly larger Masson's trichrome and reticulin staining-positive area, higher Scheuer score, and METAVIR fibrosis stage (all p < 0.001) but not steatosis. On multivariable regression, sGDNF was independently associated with cirrhosis with an odds ratio of 6.98 (95% CI: 1.10-17.94). Finally, we demonstrated that sGDNF outperformed AST to platelet ratio index, FIB-4, fibroscore, forn index, and fibrometer in differentiating F4 vs. F3. Conclusion: Using serum, tissue mRNA, and biopsy data, our study revealed a significant potential of sGDNF as a novel noninvasive biomarker for cirrhosis in CHB patients.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hepatite B Crônica , Cirrose Hepática , Aspartato Aminotransferases , Biomarcadores/sangue , Biópsia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/sangue , Hepatite B Crônica/sangue , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/virologia , Contagem de Plaquetas , RNA Mensageiro , Curva ROC , Estudos Retrospectivos
16.
BMJ Open ; 12(6): e054891, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760549

RESUMO

OBJECTIVES: To clarify non-alcoholic fatty liver disease (NAFLD) prevalence, risk factors and clinical outcome in an exemplary Chinese population, a cohort of company employees was followed up for 11 years. DESIGN: Retrospective cohort study. SETTING: Between 2006 and 2016 in Ning bo, China. PARTICIPANTS: 13 032 company employees. RESULTS: Over 11 years, the prevalence of NAFLD increased from 17.2% to 32.4% (men 20.5%-37% vs women 9.8%-22.2%). Male peak prevalence was between 40 and 60 years of age, whereas highest prevalence in women was at an age of 60 years and older. Logistic and Cox regression revealed 16 risk factors, including body mass index (BMI), albumin, white blood cell, triglycerides (TG), high-density lipoprotein, glutamyl transpeptidase, alanine transaminase, creatinine, urea acid, glucose, systolic blood pressure, diastolic blood pressure, blood sedimentation, haemoglobin, platelet and apolipoprotein B2 (p<0.05 for all factors). The area under the curve of these variables for NAFLD is 0.88. However, cause-effect analyses showed that only BMI, gender and TG directly contributed to NAFLD development. Over an 11-year follow-up period, 12.6%, 37.7% and 14.2% of male patients with NAFLD and 11.6%, 44.7% and 22.6% of female patients with NAFLD developed diabetes, hypertension and hyperuricaemia, respectively. Except one male patient who developed cirrhosis, no patients with NAFLD progressed into severe liver disease. CONCLUSION: Diabetes, hypertension and hyperuricaemia are the main clinical outcomes of NAFLD. Eleven years of NAFLD are not sufficient to cause severe liver disease. Age and obesity are direct risk factors for NAFLD. BMI, gender and TG are three parameters directly reflecting the occurrence of NAFLD.


Assuntos
Diabetes Mellitus , Hipertensão , Hiperuricemia , Hepatopatia Gordurosa não Alcoólica , Feminino , Seguimentos , Humanos , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Estudos Retrospectivos , Triglicerídeos
17.
Hepatology ; 76(6): 1673-1689, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35257388

RESUMO

BACKGROUND AND AIMS: It remains unknown how patients with liver failure maintain essential albumin levels. Here, we delineate a hierarchical transcription regulatory network that ensures albumin expression under different disease conditions. APPROACH AND RESULTS: We examined albumin levels in liver tissues and serum in 157 patients, including 84 with HCC, 38 decompensated cirrhosis, and 35 acute liver failure. Even in patients with liver failure, the average serum albumin concentrations were 30.55 g/L. In healthy subjects and patients with chronic liver diseases, albumin was expressed in hepatocytes. In patients with massive hepatocyte loss, albumin was expressed in liver progenitor cells (LPCs). The albumin gene (ALB) core promoter possesses a TATA box and nucleosome-free area, which allows constitutive RNA polymerase II binding and transcription initiation. Chromatin immunoprecipitation assays revealed that hepatocyte nuclear factor 4 alpha (HNF4α), CCAAT/enhancer-binding protein alpha (C/EBPα), and forkhead box A2 (FOXA2) bound to the ALB enhancer. Knockdown of either of these factors reduced albumin expression in hepatocytes. FOXA2 acts as a pioneer factor to support HNF4α and C/EBPα. In hepatocytes lacking HNF4α and C/EBPα expression, FOXA2 synergized with retinoic acid receptor (RAR) to maintain albumin transcription. RAR nuclear translocation was induced by retinoic acids released by activated HSCs. In patients with massive hepatocyte loss, LPCs expressed HNF4α and FOXA2. RNA sequencing and quantitative PCR analyses revealed that lack of HNF4α and C/EBPα in hepatocytes increased hedgehog ligand biosynthesis. Hedgehog up-regulates FOXA2 expression through glioblastoma family zinc finger 2 binding to the FOXA2 promoter in both hepatocytes and LPCs. CONCLUSIONS: A hierarchical regulatory network formed by master and pioneer transcription factors ensures essential albumin expression in various pathophysiological conditions.


Assuntos
Carcinoma Hepatocelular , Falência Hepática , Neoplasias Hepáticas , Humanos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ouriços/metabolismo , Neoplasias Hepáticas/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Albuminas , Falência Hepática/metabolismo
18.
JHEP Rep ; 4(2): 100397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35059619

RESUMO

Transforming growth factor-ß (TGF-ß) is a potent effector in the liver, which is involved in a plethora of processes initiated upon liver injury. TGF-ß affects parenchymal, non-parenchymal, and inflammatory cells in a highly context-dependent manner. Its bioavailability is critical for a fast response to various insults. In the liver - and probably in other organs - this is made possible by the deposition of a large portion of TGF-ß in the extracellular matrix as an inactivated precursor form termed latent TGF-ß (L-TGF-ß). Several matrisomal proteins participate in matrix deposition, latent complex stabilisation, and activation of L-TGF-ß. Extracellular matrix protein 1 (ECM1) was recently identified as a critical factor in maintaining the latency of deposited L-TGF-ß in the healthy liver. Indeed, its depletion causes spontaneous TGF-ß signalling activation with deleterious effects on liver architecture and function. This review article presents the current knowledge on intracellular L-TGF-ß complex formation, secretion, matrix deposition, and activation and describes the proteins and processes involved. Further, we emphasise the therapeutic potential of toning down L-TGF-ß activation in liver fibrosis and liver cancer.

19.
Z Gastroenterol ; 60(1): 58-66, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35042254

RESUMO

Chronic alcohol consumption induces stress and damage in alcohol metabolising hepatocytes, which leads to inflammatory and fibrogenic responses. Besides these direct effects, alcohol disrupts intestinal barrier functions and induces gut microbial dysbiosis, causing translocation of bacteria or microbial products through the gut mucosa to the liver and, which induce inflammation indirectly. Inflammation is one of the key drivers of alcohol-associated liver disease progression from steatosis to severe alcoholic hepatitis. The current standard of care for the treatment of severe alcoholic hepatitis is prednisolone, aiming to reduce inflammation. Prednisolone, however improves only short-term but not long-term survival rates in those patients, and even increases the risk for bacterial infections. Thus, recent studies focus on the exploration of more specific inflammatory targets for the treatment of severe alcoholic hepatitis. These comprise, among others interference with inflammatory cytokines, modulation of macrophage phenotypes or targeting of immune cell communication, as summarized in the present overview. Although several approaches give promising results in preclinical studies, data robustness and ability to transfer experimental results to human disease is still not sufficient for effective clinical translation.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Progressão da Doença , Disbiose , Humanos , Inflamação , Fígado
20.
Z Gastroenterol ; 60(1): 36-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35042252

RESUMO

Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.


Assuntos
Hepatopatias Alcoólicas , Neoplasias Hepáticas , Progressão da Doença , Detecção Precoce de Câncer , Humanos , Fígado , Hepatopatias Alcoólicas/diagnóstico , Hepatopatias Alcoólicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...